

Policy Number	MED205.035
Policy Effective Date	10/01/2024
Policy End Date	12/31/2025

Percutaneous and Subcutaneous Tibial Nerve Stimulation

Table of Contents
<u>Coverage</u>
<u>Policy Guidelines</u>
<u>Description</u>
<u>Rationale</u>
<u>Coding</u>
<u>References</u>
<u>Policy History</u>

Related Policies (if applicable)
None

Disclaimer

Carefully check state regulations and/or the member contract.

Each benefit plan, summary plan description or contract defines which services are covered, which services are excluded, and which services are subject to dollar caps or other limitations, conditions or exclusions. Members and their providers have the responsibility for consulting the member's benefit plan, summary plan description or contract to determine if there are any exclusions or other benefit limitations applicable to this service or supply. **If there is a discrepancy between a Medical Policy and a member's benefit plan, summary plan description or contract, the benefit plan, summary plan description or contract will govern.**

Coverage

Percutaneous tibial nerve stimulation (PTNS) administered once weekly for up to 12 weeks **may be considered medically necessary** for treatment of overactive bladder for individuals with ALL of the following:

1. OAB symptoms (i.e., urgency with or without urge incontinence, and usually with frequency and/or nocturia) in the absence of pathologic or metabolic cause; AND
2. Significant disability due to OAB that limits the individual's ability to participate in daily activities; AND
3. Failed at least 4 weeks of behavioral therapy (e.g., pelvic floor muscle training, biofeedback, timed voids or fluid management); AND
4. Failed a trial of two different classes of medications for the treatment of OAB (e.g., antimuscarinics/anticholinergics and β 3 adrenoceptor agonists) of at least 4 weeks each, unless contraindicated.

Monthly maintenance PTNS therapy **may be considered medically necessary** for individuals showing improvement as a result of the 12 initial weekly treatments of PTNS for overactive bladder.

All other uses of PTNS **are considered experimental, investigational and/or unproven**, including but not limited to:

1. Continued therapy after initial 12 weeks when no improvement is seen;
2. Continued therapy when improvement is not sustained;
3. Stress incontinence;
4. Interstitial cystitis;
5. Neurogenic bladder due to neurologic impairment (e.g., spinal cord injury, multiple sclerosis, Alzheimer's disease, Parkinson disease, stroke, etc.);
6. Obstructive urinary retention; and
7. Fecal incontinence.

Subcutaneous tibial nerve stimulation delivered by an implantable peripheral neurostimulator system (e.g., eCoin®) **is considered experimental, investigational and/or unproven** for all indications, including individuals with non-neurogenic urinary dysfunction including overactive bladder.

Policy Guidelines

Annual evaluation by a physician may be performed to ensure efficacy is continuing for maintenance percutaneous tibial nerve stimulation treatments.

Description

Percutaneous tibial nerve stimulation (PTNS; also known as posterior tibial nerve stimulation) is an electrical neuromodulation technique used primarily for treating voiding dysfunction. Subcutaneous tibial nerve stimulation via an implantable peripheral neurostimulator is an alternate technique for treating urgency urinary incontinence associated with overactive bladder (OAB) syndrome.

Background

Voiding Dysfunction

Common causes of non-neurogenic voiding dysfunction are pelvic floor neuromuscular changes (e.g., from pregnancy, childbirth, surgery), inflammation, medication (e.g., diuretics, anticholinergics), obesity, and psychogenic factors. Overactive bladder is a non-neurogenic voiding dysfunction characterized by urinary frequency, urgency, urge incontinence, and nonobstructive retention.

Neurogenic bladder dysfunction is caused by neurologic damage in patients with multiple sclerosis, spinal cord injury, detrusor hyperreflexia, or diabetes with peripheral nerve

involvement. The symptoms include overflow incontinence, frequency, urgency, urge incontinence, and retention.

Treatment

Approaches to the treatment of incontinence differentiate between urge incontinence and stress incontinence. Conservative behavioral management such as lifestyle modification (e.g., dietary changes, weight reduction, fluid management, smoking cessation) along with pelvic floor exercises and bladder training are part of the initial treatment of overactive bladder symptoms and both types of incontinence. Pharmacotherapy is another option, and different medications target different symptoms. Some individuals experience mixed incontinence.

If behavioral therapies and pharmacotherapy are unsuccessful, percutaneous tibial nerve stimulation (PTNS), sacral nerve stimulation, or botulinum toxin may be recommended.

Percutaneous Tibial Nerve Stimulation

The current indication cleared by the U.S. Food and Drug Administration (FDA) for PTNS is overactive bladder and associated symptoms of urinary frequency, urinary urgency, and urge incontinence.

Altering the function of the posterior tibial nerve with PTNS is believed to improve voiding function and control. The mechanism of action is believed to be retrograde stimulation of the lumbosacral nerves (L4-S3) via the posterior tibial nerve located near the ankle. The lumbosacral nerves control the bladder detrusor and perineal floor.

Administration of PTNS consists of inserting a needle above the medial malleolus into the posterior tibial nerve followed by the application of low-voltage (10 mA, 1-10 Hz frequency) electrical stimulation that produces sensory and motor responses as evidenced by a tickling sensation and plantarflexion or fanning of all toes. Noninvasive PTNS has also been delivered with transcutaneous or surface electrodes. The recommended course of treatment is an initial series of 12 weekly office-based treatments followed by an individualized maintenance treatment schedule.

Percutaneous tibial nerve stimulation is less invasive than traditional sacral nerve neuromodulation, which has been successfully used to treat urinary dysfunction but requires implantation of a permanent device. In sacral root neuromodulation, an implantable pulse generator that delivers controlled electrical impulses is attached to wire leads that connect to the sacral nerves, most commonly the S3 nerve root that modulates the neural pathways controlling bladder function.

Percutaneous tibial nerve stimulation has also been proposed as a treatment for non-neurogenic and neurogenic bladder syndromes and fecal incontinence.

Subcutaneous Tibial Nerve Stimulation

The current indication approved by the FDA for subcutaneous tibial nerve stimulation (STNS) is urgency urinary incontinence in individuals who are intolerant or who have had an inadequate response to more conservative treatments or who have undergone a successful trial of PTNS. STNS is administered through a coin-sized leadless battery-powered implant (see Regulatory section). STNS offers a less invasive alternative to traditional sacral nerve neuromodulation and offers a convenient delivery system for automated treatments without the need for chronic outpatient PTNS treatment sessions.

Regulatory Status

In 2005, the Urgent® PC Neuromodulation System was the initial PTNS device cleared for marketing by the FDA through the 510(k) process to treat patients suffering from urinary urgency, urinary frequency, and urge incontinence. Additional PTNS devices have been cleared for marketing through the 510(k) process. They are listed in Table 1.

The devices are not FDA cleared for other indications, such as the treatment of fecal incontinence.

Wireless technology is evolving for the treatment of overactive bladder. In March 2022, the eCoin® Peripheral Neurostimulator System (Valencia Technologies Corporation) became the first subcutaneous tibial nerve stimulation implant approved by the FDA through the premarket authorization (PMA) process for individuals with urgency urinary incontinence (P200036; FDA Product Code: QPT).

Table 1. FDA-Cleared Percutaneous Tibial Nerve Stimulators (FDA Product Code: NAM)

Device Name	Manufacturer	Cleared	510(k)	Indications
Urgent® PC Neuromodulation System	Uroplasty, now Cogentix Medical	Oct 2005	K052025	Treatment of urinary urgency, urinary frequency, and urge incontinence
Urgent® PC Neuromodulation System	Uroplasty, now Cogentix Medical	Jul 2006	K061333	FDA determined the 70% isopropyl alcohol prep pad contained in the kit is subject to regulation as a drug
Urgent® PC Neuromodulation System	Uroplasty, now Cogentix Medical	Aug 2007	K071822	Labeling update, intended use is unchanged
Urgent® PC Neuromodulation System	Uroplasty, now Cogentix Medical	Oct 2010	K101847	Intended use statement adds the diagnosis of overactive bladder
NURO™ Neuromodulation System	Advanced Uro-Solutions, now Medtronic	Nov 2013	K132561	Treatment of patients with overactive bladder and associated symptoms of urinary urgency, urinary

				frequency, and urge incontinence
ZIDA Wearable Neuromodulation System	Exodus Innovations	Mar 2021	K192731	Treatment of patients with an overactive bladder and associated symptoms of urinary urgency, urinary frequency, and urge incontinence
Vivally® System Wearable, Non-Invasive Neuromodulation System and Mobile Application	Avation Medical, Inc.	Apr 2023	K220454	Treatment of patients with bladder conditions of urinary incontinence and urinary urgency.

FDA: U.S. Food and Drug Administration.

*This may not be an all-inclusive list. Refer to the FDA web site at <www.fda.gov> for additional information on devices.

Rationale

Medical policies assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function, including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition.

Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCTs) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Percutaneous Tibial Nerve Stimulation for Non-Neurogenic Urinary Dysfunction Including Overactive Bladder (OAB) Clinical Context and Therapy Purpose

The purpose of percutaneous tibial nerve stimulation (PTNS) in individuals who have non-neurogenic urinary dysfunction including overactive bladder (OAB) and have failed behavioral and pharmacologic therapy or those with OAB who have responded to an initial course of PTNS, is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant populations of interest are:

- Individuals who have non-neurogenic urinary dysfunction including OAB who have failed behavioral and pharmacologic therapy, and
- Individuals with OAB responsive to an initial course of PTNS.

Interventions

The therapy being considered is PTNS as an initial or maintenance therapy. During PTNS, a needle is inserted above the medial malleolus into the posterior tibial nerve followed by the application of low-voltage (10 mA, 1-10 Hz frequency) electrical stimulation. Noninvasive PTNS may be delivered with transcutaneous or surface electrodes. The recommended course of treatment is an initial series of 12 weekly office-based treatments followed by an individualized maintenance treatment schedule.

Comparators

The following therapies are currently being used to make decisions about non-neurogenic urinary dysfunction: botulinum toxin and sacral nerve stimulation (SNS).

Botulinum toxin is injected into the detrusor muscle. However, the toxin increases the risk of urinary retention and is not recommended for patients with a history of urinary retention or recurrent urinary tract infection (UTI).

Sacral nerve stimulation may be conducted in an outpatient clinical setting using temporary wire leads. Due to the incidence of lead migration, a 2-step process in a surgical setting is recommended. In the initial test phase, wire leads are inserted under the skin and if 50% improvement is reported, the patient may elect permanent implantation with a pacemaker-like stimulator. If the test phase is unsuccessful, the leads are then removed.

Outcomes

The general outcomes of interest are reductions in symptoms (e.g., self-reported assessment of symptoms, decrease in the number of voids per day) and improved quality of life. Outcomes are measured following the 12-week treatment regimen.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Systematic Reviews

Wang et al. (2020) evaluated PTNS for patients with OAB in a systematic review and meta-analysis that included 28 studies (N=2461). (1) The efficacy of PTNS was compared to baseline information before treatment or other treatments (not specified). Reviewers included several trials discussed in the sections below: the Overactive Bladder Innovative Therapy (OrBIT) trial (Peters et al. [2009]), the Sham Effectiveness in Treatment of Overactive Bladder Symptoms (SUMiT) trial (Peters et al. [2010]), and the Finazzi-Agro et al. (2010), Vecchioli-Scaldazza et al. (2013), and Preyer et al. (2015) trials. Results demonstrated that PTNS reduced the daily frequency of the following symptoms: voiding (mean difference [MD], -2.48 ; 95% confidence interval [CI], -3.19 to -1.76), nocturia (MD, -1.57 ; 95% CI, -2.16 to -0.99), urgency episodes (MD, -2.20 ; 95% CI, -3.77 to -0.62), and incontinence episodes (MD, -1.37 ; 95% CI, -1.71 to -1.02). Percutaneous tibial nerve stimulation also improved maximum cystometric capacity (MD, 63.76 ; 95% CI, 31.90 to 95.61) and compliance (MD, 7.62 ; 95% CI, 0.61 to 14.63). The pooled success rate was 68% (95% CI, 59% to 78%). The most common complication following PTNS was pain at the puncture site.

Xiong et al. (2021) performed a systematic review with meta-analysis of 6 RCTs (N=291) evaluating the efficacy of tibial nerve stimulation (either PTNS or transcutaneous tibial nerve stimulation [TTNS]) versus anticholinergic medications for OAB. (2) The SUMiT trial and trials by Vecchioli-Scaldazza et al. (2013) and Preyer et al. (2015) were among those included. There was a significant reduction in urge incontinence episodes with tibial nerve stimulation versus anticholinergic medications (MD, -1.11 ; 95% CI, -1.66 to -0.55). However, tibial nerve stimulation and anticholinergic medications had comparable effects on micturition, nocturia, urgency, and voided volume. Discontinuation due to adverse events was lower with tibial nerve stimulation than with anticholinergic medications (odds ratio [OR], 0.13 ; 95% CI, 0.03 to 0.51). Two systematic reviews that did not include a quantitative analysis evaluated PTNS for nonobstructive urinary retention. Coolen et al. (2020) evaluated 8 studies, 5 of which reported the efficacy of PTNS and 2 of transcutaneous electrical nerve stimulation (TENS). (3) The objective success rate for PTNS (defined as a decrease of at least 50% in the frequency or volume of catheterization per 24 hr) was 25% to 41%. The subjective success rate (defined as the patient's request for continued chronic treatment with PTNS) ranged from 25% to 41%. A subjective success rate of 80% was reported in 1 study of women who received transvaginal TENS. Ho et al. (2021) evaluated 16 studies, 5 of which reported on the efficacy of PTNS and 11 that of sacral neuromodulation (also referred to as SNM). (4) The success rate for PTNS (defined as at least a 50% reduction in symptoms) ranged from 50% to 60%, while the success rates for SNM (which had variable definitions across trials) ranged between 42.5% and 100% (median,

79.2%) for the test stimulation phase and 65.5% to 100% (median, 89.1%) in the long term (median follow, 42 months).

Tutulo et al. (2018) searched the literature through December 2017 and identified 21 studies using either SNS or PTNS to treat lower urinary tract dysfunction and chronic pelvic pain not responding to standard therapies. (5) Reviewers concluded that both SNS and PTNS were effective therapies. Percutaneous tibial nerve stimulation demonstrated higher success rates ($\geq 50\%$ reduction in leakage episodes) and fewer side effects compared with SNS; however, longer follow-up studies with PTNS are needed. Another systematic review by Tutulo et al. (2018) conducted a literature search through December 2017 of RCTs evaluating SNS and PTNS for the treatment of OAB unresponsive to standard medical therapy. (6) Five RCTs were identified. Reviewers concluded that both SNS and PTNS, with success rates ranging from 61% to 90% and 54% to 79%, respectively, could be considered effective.

A Cochrane review by Stewart et al. (2016) evaluated electrical stimulation with nonimplanted electrodes for OAB in adults. (7) The literature search was current up to December 2015. The objective of the review was to determine whether electrical stimulation (including vaginal and rectal electrical stimulation, and PTNS) was better than no treatment or better than any other treatment available for OAB. Studies reviewed were RCTs or quasi-RCTs of electrical stimulation that included adults with OAB with or without urgency and urge urinary incontinence. Trials whose participants had stress urinary incontinence were excluded. Sixty-three eligible trials were identified (N=4424 randomized participants). Reviewers included several trials discussed below: the OrBIT (Peters et al. [2009]) and OrBIT follow-up trials (MacDiarmid et al. [2010]), the SUMiT trial (Peters et al. [2010]), the Sustained Therapeutic Effects of Percutaneous Tibial Nerve Stimulation (STEP) trial (Peters et al. [2013]), and the Finazzi-Agro et al. (2010), Schreiner et al. (2010), Vecchioli-Scaldazza et al. (2013), and Preyer et al. (2015) trials.

Data were obtained from the end of treatment and the longest available follow-up period. The primary outcomes identified were the perception of cure, the perception of improvement, and condition-related quality of life measures as defined by the original authors or by any validated measurement scales such as the International Consultation on Incontinence Questionnaire. Secondary outcomes pertinent to the evidence review were a quantification of symptoms, procedure outcome measures, and adverse events.

The key findings from the Cochrane review (2016) of evidence are summarized in Table 2. Percutaneous tibial nerve stimulation results were combined for vaginal and rectal electrical stimulation.

Table 2. Summary of Cochrane Systematic Review Outcomes

Comparators to Electrical Stimulation ^a	Electrical Stimulation Effect ^a	QOE
No active treatment, placebo, or sham		
Reduction in OAB symptoms	More effective	Moderate
Reduction in urge urinary incontinence	More effective	Moderate
Improvement in OAB-related quality of life	More effective	Moderate

Pelvic floor muscle training		
Reduction in OAB symptoms	More effective	Moderate
Reduction in urge urinary incontinence	Effect uncertain	No evidence
Improvement in OAB-related quality of life	Effect uncertain	Low
Drug therapy		
Reduction in OAB symptoms	More effective	Moderate
Reduction in urge urinary incontinence	Effect uncertain	No evidence
Improvement in OAB-related quality of life	Effect uncertain	No evidence
Oxybutynin or tolterodine		
Adverse events	Lower risk	Low
Placebo/sham		
Adverse events	Lower risk	Moderate

Adapted from Stewart et al. (2016). (7)

OAB: overactive bladder; QOE: quality of evidence.

^a Electrical stimulation includes percutaneous tibial nerve stimulation.

Forty-four trials did not report the primary outcomes of perception of cure or improvement in OAB. The majority of trials were deemed to be at low or unclear risk of selection and attrition bias and unclear risk of performance and detection bias. Lack of clarity regarding the risk of bias was largely due to poor reporting. Many studies did not report whether electrical stimulation was safer than other treatments or if one type of electrical stimulation was safer than others.

In 2012 and 2013, several other systematic reviews of the literature on PTNS for treating OAB were published. (8-11) Only one conducted pooled analyses of study results. (8) This review, by Burton et al. (2012), conducted a pooled analysis of data from 4 trials (2 of which were abstracts) comparing PTNS with sham treatment. Reviewers found a significantly higher risk of successful treatment with PTNS (relative risk [RR], 7.02; 95% CI, 1.69 to 29.17) compared with a control intervention. The CI was wide, indicating a lack of precision in the pooled estimate. The patient samples in these studies were homogenous by sex, severity and duration of symptoms, and previous treatment history. The definition of successful treatment also varied among studies. The SUMiT trial (discussed below) contributed 220 (76%) of 289 patients in the pooled analysis.

Also, Shamlivan et al. (2012) conducted a comparative effectiveness review for the Agency for Healthcare Research and Quality on the broader topic of nonsurgical treatments for urinary incontinence in adult women. (12) Reviewers identified 4 RCTs comparing PTNS with no active treatment in patients with OAB. Two of the 4 RCTs reported 12-week results of the sham-controlled SUMiT trial; 1 of them included a subgroup of SUMiT participants and was only published as an abstract. The Shamlivan report included a pooled analysis of data from 3 studies that found a statistically significant improvement in urinary incontinence in the PTNS group compared with the control group (RR, 1.9; 95% CI, 1.1 to 3.2). This pooled analysis included 405 patients: 220 in the SUMiT trial, 150 in the SUMiT trial subgroup analysis, and 35 in a trial by Finazzi-Agro et al. (2010). (13) A limit of the Shamlivan et al. (2012) analysis was that

the 150 patients in the SUmiT subgroup analysis were included twice. The Shamliyan review did not discuss evidence on the efficacy of PTNS beyond 12 weeks.

Sham-Controlled Randomized Trials

The SUmiT trial, reported by Peters et al. (2010), was a sham-controlled randomized trial. (14) Before conducting the trial, investigators performed a pilot study in healthy volunteers to determine the adequacy of a sham PTNS intervention. (15) The sham procedure was correctly identified by 10 (33%) of 30 volunteers. This percentage is below the 50% that could be expected by chance, so investigators concluded that the procedure was a feasible sham. Eligibility criteria included: a score of 4 or more on the Overactive Bladder Questionnaire Short Form (OAB-q SF) for urgency, self-reported bladder symptoms lasting at least 3 months, and having failed conservative care for these symptoms or a diagnosis of OAB. Overactive bladder and quality of life questionnaires, as well as 3-day voiding diaries, were completed at baseline and 13 weeks.

Both the randomized sham and active intervention groups received 12 weekly 30-minute intervention sessions. In the sham group, a blunt (placebo) instrument was used to simulate the location and sensation of needle electrode insertion in active treatment. One inactive PTNS surface electrode and 2 active TENS surface electrodes were used. The TENS unit (Urgent PC system) delivered low-level stimulation to mimic the PTNS intervention. The 12-week treatment was completed by 103 (94%) of 110 in the PTNS group and 105 (95%) of 110 in the sham group.

The primary trial endpoint was an efficacy assessment measured by a 7-level global response assessment (GRA) tool, in which patients reported change in symptoms as markedly worse, moderately worse, mildly worse, the same, slightly improved, moderately improved, or markedly improved. A responder was defined as one who reported symptoms as moderately or markedly improved at week 13. The rate of responders was 54.5% (60/110) of PTNS subjects compared with 20.9% (23 of 110) of sham subjects. There was a statistically significant benefit reported with PTNS compared with sham treatment in voiding diary variables as well.

Six PTNS subjects reported 9 mild or moderate treatment-related adverse events consisting of ankle bruising, discomfort at the site of needle insertion, bleeding at the site, and tingling in the leg. No local treatment-related adverse events were reported in the sham group, and no systemic adverse events occurred in either group.

The STEP trial, an extension of the SUmiT study, included only responders from the PTNS group. (16) The purpose was to determine the threshold for maintenance therapy. Of the 60 PTNS group 13-week responders, 50 entered the extension study. Patients underwent a 14-week transitional protocol consisting of 2 treatments with a 14-day interval, 2 treatments with a 21-day interval, and then 1 treatment after another 28 days. Following this 14-week period, a personal treatment plan was developed for each patient. Percutaneous tibial nerve stimulation was delivered when patients reported that their symptoms increased. Between 6 and 36 months, patients received a median of 1.1 monthly PTNS treatments after the 14-week tapering

period. Data were available on 34 patients at 24 months and on 29 patients at 36 months. In a per-protocol analysis, compared with baseline, 28 (97%) of 29 patients who completed the 36-month follow-up met the primary efficacy endpoint of moderate or marked improvement in overall bladder symptoms on the GRA. Also, compared with baseline, all voiding diary measures were significantly improved in this group of patients at every 6-month follow-up.

Adverse events noted in the STEP study included 1 report of restricted vaginal opening with unknown relation to treatment and 2 mild bleeding events at the needle site in the same participant. Nine patients reported 11 mild adverse events with an unknown relation to treatment including vaginal bleeding, mild depression, shoulder pain, diarrhea, leg pain, stomach ache, pelvic pain, UTI, a pulling sensation in both feet, bladder pressure, and pinched nerve pain.

A limitation of the SUMiT trial was that the primary outcome (the GRA) is a single-item subjective measure. An additional limitation was that only short-term comparative data were available. And unlike medication that can be taken in the same manner on an ongoing basis, PTNS involves an initial 12-week course of treatment followed by maintenance therapy, which varies from the initial treatment course. To date, maintenance therapy has not been well defined.

Tables 3 and 4 summarize the SUMiT RCT and STEP extension studies.

Table 3. Summary of SUMiT RCT and STEP Extension Characteristics

Study; Trial	Countries	Sites	Dates	Randomized or Enrolled/ Completed Trial		Outcome
				PTNS	Sham	
Peters et al. (2010) (14); SUMiT	U.S.	23	2008-2009	110/103	110/105	GRA at 13wk
Peters et al. (2013) (16); STEP	U.S.	23	2009-2012	50/29 ^a	None	GRA at 36mo

GRA: global response assessment; PTNS: percutaneous tibial nerve stimulation; RCT: randomized controlled trial; STEP: Sustained Therapeutic Effects of Percutaneous Tibial Nerve Stimulation; SUMiT: Sham Effectiveness in Treatment of Overactive Bladder Symptoms.

^a Extension study of 50 PTNS responders in SUMiT trial.

Table 4. Summary of SUMiT RCT and STEP Extension Results

Study	Primary Outcome: Moderately or Markedly Improved GRA			
	PTNS, n/N (%)	Sham, n/N (%)	Confidence Intervals	p
SUMiT (2010) (14)				
GRA (13 wk)	60/110 (54.5)	23/110 (20.9)	NR	<0.001
STEP (2013) (16)				
GRA (36 mo)	28/29 (97)	None	None	None

GRA: Global response assessment; NR: not reported; wk: week; mo: month; PTNS: percutaneous tibial nerve stimulation; RCT: randomized controlled trial; STEP: Sustained Therapeutic Effects of Percutaneous Tibial Nerve Stimulation: SUMiT: Sham Effectiveness in Treatment of Overactive Bladder Symptoms.

An RCT by Finazzi-Agro et al. (2010) evaluated 35 women who had urge incontinence and detrusor overactivity on urodynamic testing. (13) Patients were randomized to 30-minute PTNS sessions, 3 times per week for 4 weeks (n=18) or sham treatment (n=17). One patient dropped out of the PTNS group, and 2 dropped out of the sham group; analysis was not intention-to-treat. The primary outcome, percent responders at 4 weeks (defined as at least 50% reduction in incontinent episodes), was attained by 12 (71%) of 17 in the PTNS group and 0 (0%) of 15 in the sham group.

Other RCTs

An RCT comparing PTNS with medication for the treatment of OAB was published by Vecchioli-Scaldazza et al. (2018). (17) This 3-arm trial compared solifenacin (n=27), PTNS (n=34), and a combination of solifenacin plus PTNS (n=33) and followed patients through 10 months post treatment. Patients in all 3 arms experienced significant reductions from baseline in daytime frequency, night-time frequency, and urgency. Percutaneous tibial nerve stimulation was more effective than solifenacin alone, and the combination of PTNS plus solifenacin was more effective than PTNS alone. The combination therapy also showed the longest effect.

A group of RCTs has compared PTNS with an alternative treatment, medication, conservative therapy, or electrical stimulation. (14, 17-22) The trials reported inconsistent findings on short-term efficacy, and only 1 reported on the efficacy of PTNS beyond 12 weeks.

Three studies used medication as the comparison intervention. Preyer et al. (2015) published a nonblinded study comparing 12 weeks of PTNS with tolterodine in 36 women who had OAB. (20) There were no significant differences between groups on the reduction of incontinence episodes in 24 hours (p=.89) or quality of life (p=.07).

Another RCT comparing PTNS with solifenacin was a crossover trial published by Vecchioli-Scaldazza et al. (2013). (21) Forty women with OAB received PTNS (twice weekly for 6 weeks) or medication, given in random order, with a 6-week washout period between treatments. Group A received medication first, and group B received PTNS first. The primary efficacy outcome was a reduction in the number of voids in a 24-hour period. Thirty (75%) of the 40 patients completed the trial. The number of daily voids (the primary outcome) significantly decreased after each treatment compared with before treatment. Also, secondary outcomes, including nocturia urge incontinence, and voided volume, significantly improved after each treatment compared with pretreatment values. The authors did not directly compare the efficacy of medication with PTNS.

An RCT compared PTNS with conservative therapy. Schreiner et al. (2010) assessed 51 women older than 60 years of age who complained of urge urinary incontinence. (22) Women were

randomized to 12 weeks of conservative treatment (Kegel exercises, bladder training) alone (n=26) or conservative treatment plus 12 weekly sessions of PTNS (n=25). Blinding was not discussed. The response rate at 12 weeks, defined as a reduction of at least 50% in the number of incontinence episodes reported by the patient in a bladder diary, was 76% in the PTNS group and 27% in the conservative treatment-only group (p=.001).

Gungor Ugurlucan et al. (2013) in Turkey compared transvaginal electrical stimulation (n=38) with PTNS (n=21) in women who had OAB. (19) The electrical stimulation protocol consisted of 20-minute treatments, 3 times a week for 6 to 8 weeks. Percutaneous tibial nerve stimulation was performed with an Urgent PC device used for 12 weekly, 30-minute sessions. Fifty-two (88%) of 59 patients completed the trial. The authors assessed numerous outcome variables and did not specify primary outcomes or adjust p values for multiple comparisons. Four bladder diary variables were reported. From baseline to the end of the treatment period, the groups did not differ significantly in mean change in urgency episodes, nocturia, or incontinence episodes. The mean number of urgency episodes was 2.9 at baseline and 1.6 after treatment in the electrical stimulation group, and 2.0 at baseline and 1.3 after treatment in the PTNS group (p=.54). The mean daytime frequency was 7.8 at baseline and 5.8 after treatment in the electrical stimulation group, and 7.6 at baseline and 7.4 in the PTNS group (p=.03). The authors reported that a significantly higher proportion of patients in the electrical stimulation group described themselves as cured, but they did not provide proportions or p values.

The OrBIT trial is the largest randomized trial that was not sham-controlled. This trial was a nonblinded comparison of PTNS and extended-release tolterodine (Detrol LA) in women with OAB. (23) Eligibility included symptoms of OAB, with at least 8 voids per 24 hours; the mean daily voids for those entering the study were 12.3. The primary outcome was the noninferiority of PTNS in the mean reduction in the number of voids per 24 hours after 12 weeks of treatment. Noninferiority was defined as no more than a 20% difference in the mean void reduction. As expected, the mean reduction in voids of 1.8 for tolterodine and 3.6 for PTNS was based on previously published efficacy data. Study findings showed the noninferiority of PTNS based on results for 84 participants.

The trial also reported on secondary outcomes. There were no statistically significant differences between the PTNS and tolterodine groups for other symptoms recorded in the voiding diary. Improvement in all OAB symptom episodes was statistically significant within each group from baseline to 12 weeks, but not between groups.

The OrBIT trial lacked blinding of patients and providers and lacked comparative data beyond the end of the initial 12-week treatment period. There was no sham or placebo group to mitigate the potential bias due to subjective outcomes. Also, the trialists did not clearly define criteria for "improvement" or "cure" (a key secondary outcome) and did not report the extent of compliance with medical therapy. Finally, different data collection methods were used in the 2 groups (e.g., for adverse event outcomes and possibly for other self-reported outcomes).

MacDiarmid et al. (2010) reported on 1-year follow-up data for patients from the OrBIT trial who had been assigned to the PTNS group and had reported symptom improvement at 12 weeks. (24) Of the 35 responders, 33 were included. They received a mean of 12.1 additional treatments between the 12-week and 12-month visits, and there was a median of 17 days between treatments. Data were available for 32 (97%) of the 33 participants at 6 months and 25 (76%) of the 33 participants at 12 months.

As noted, this analysis lacked data from the tolterodine group to assess long-term outcomes. Additionally, not all patients in the PTNS group were included in the follow-up analysis; rather, only PTNS responders were eligible. A potential bias is that the initial subjective outcome measure might have been subject to the placebo effect. Moreover, patients in the PTNS group who responded to initial treatment might have been particularly susceptible to a placebo response and/or might represent those with the best treatment response. Thus, these individuals might also have been susceptible to a placebo response during maintenance treatments, especially treatments offered on an as-needed basis.

Tables 5 and 6 summarize the OrBIT and OrBIT 1-year follow-up studies.

Table 5. Summary of OrBIT RCT Characteristics

Study	Countries	Sites	Dates	Randomized/Completed		Outcome ^a
				PTNS	Tolterodine	
Peters et al. (2009) (23)	U.S.	11	2006-2008	50/41	50/43	Reported
MacDiarmid et al. (2010) (24) 1-y follow-up	U.S.	11	2008-2009	33/32 ^b		Reported

OrBIT: Overactive Bladder Innovative Therapy, PTNS: percutaneous tibial nerve stimulation; RCT: randomized controlled trial; y: year.

^a Mean reduction in the number of voids per 24 hours after 12 weeks of treatment.

^b Eligible responders from 12-week study.

Table 6. Summary of OrBIT RCT Results

Study	Primary Outcome: Mean Reduction in Voids per Day (SD)			
OrBIT (2009) (23)	PTNS (n=41)		Tolterodine (n=43)	
	Baseline	12 Weeks	Baseline	12 Weeks
Voids per day	12.1 (3.1)	-2.4 (4.0)	12.5 (3.7)	-2.5 (3.9)
p		<0.001		<0.001
Confidence interval		NR		NR
OrBIT 1-y follow-up (2010) (24)	PTNS (n=25)			
	Baseline	12 Months		
Voids per day	12.4 (3.5)	-2.8 (3.7)	Not applicable	Not applicable
p		<0.001		

Confidence interval		NR		
---------------------	--	----	--	--

NR: not reported; y: year; OrBIT: Overactive Bladder Innovative Therapy; PTNS: percutaneous tibial nerve stimulation; RCT: randomized controlled trial; SD: standard deviation.

Section Summary: PTNS for Non-Neurogenic Urinary Dysfunction including OAB

Initial Course of PTNS

For individuals who have non-neurogenic urinary dysfunction including OAB who have failed behavioral and pharmacologic therapy and received an initial course of PTNS, a number of RCTs of PTNS have been published, including 2 key industry-sponsored RCTs, the OrBIT and SUMiT trials. Systematic reviews of the evidence have found short-term improvements with PTNS. The largest, highest quality study was the blinded, sham-controlled SUMiT trial. This trial reported a statistically significant benefit of PTNS versus sham at 12 weeks. In another small sham-controlled trial, a 50% reduction in urge incontinent episodes was attained in 71% of the PTNS group compared with 0% in the sham group. The nonblinded OrBIT trial found that PTNS was noninferior to medication treatment at 12 weeks.

Maintenance Course of PTNS

For individuals who have OAB syndrome who have failed behavioral and pharmacologic therapy, respond to an initial course of PTNS, and then receive maintenance PTNS therapy, there are up to 36 months of observational data that suggest there is a durable effect for some of these patients. The SUMiT and OrBIT trials each included extension studies, which followed individuals who responded to the initial course of PTNS and continued to receive periodic maintenance therapy. There is variability in the interval between and frequency of maintenance treatments, and an optimal maintenance regimen remains unclear. While comparative data are not available after the initial 12-week treatment period, the observational data support a clinically meaningful benefit for use in individuals who have already failed behavioral and pharmacologic therapy and respond to the initial course of PTNS. Percutaneous tibial nerve stimulation may allow such individuals to avoid more invasive interventions. Adverse events appear to be limited to local irritation for both short- and long-term PTNS use. Typical regimens schedule maintenance treatments every 4 to 6 weeks.

Subcutaneous Tibial Nerve Stimulation for Non-Neurogenic Urinary Dysfunction Including OAB

Clinical Context and Therapy Purpose

The purpose of subcutaneous tibial nerve stimulation (STNS) in individuals who have non-neurogenic urinary dysfunction including overactive bladder (OAB) with episodes of urgency urinary incontinence and have failed behavioral and pharmacologic therapy or who have responded to an initial course of PTNS, is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant populations of interest are:

- Individuals who have non-neurogenic urinary dysfunction including OAB with episodes of urgency urinary incontinence who have failed behavioral and pharmacologic therapy, and
- Individuals with OAB with episodes of urgency urinary incontinence responsive to an initial course of PTNS.

Interventions

The therapy being considered is STNS. The eCoin Peripheral Neurostimulator System is an FDA-approved coin-sized leadless battery-powered implant that delivers electrical stimulation to the tibial nerve (0.5-15 mA, 20 Hz frequency). The recommended treatment duration is 30 minutes every 3 days for the first 18 weeks (42 sessions) and every 4 days thereafter and is programmed by the clinician. A patient controller can be leveraged to inhibit an automatic session in the event of undesired or painful stimulation. The battery life is estimated at up to 3 years (range, 1-8 years).

Comparators

The following therapies are currently being used to make decisions about non-neurogenic urinary dysfunction: botulinum toxin and SNS.

Botulinum toxin is injected into the detrusor muscle. However, the toxin increases the risk of urinary retention and is not recommended for patients with a history of urinary retention or recurrent UTI.

Sacral nerve stimulation may be conducted in an outpatient clinical setting using temporary wire leads. Due to the incidence of lead migration, a 2-step process in a surgical setting is recommended. In the initial test phase, wire leads are inserted under the skin and if 50% improvement is reported, the patient may elect permanent implantation with a pacemaker-like stimulator. If the test phase is unsuccessful, the leads are then removed.

Outcomes

The general outcomes of interest are reductions in symptoms (e.g., self-reported assessment of symptoms, decrease in the number of voids per day) and improved quality of life.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Nonrandomized Studies

Rogers et al. (2021) evaluated the safety and efficacy of the wireless eCoin device in a single-arm, open-label trial at 15 sites in the US. (25) A total of 132 patients with refractory (failed ≥1 second or third-line therapy) OAB received the eCoin device and were included in the intention-to-treat analysis. The majority of patients were female (98%) and 26% had received prior PTNS therapy. At 24-week follow-up, 69% (CI, 61% to 77%) of patients had a 50% reduction in urge urinary incontinence symptoms based on 3-day voiding diaries and were considered "responders". Results were similar at weeks 36 and 48 with 70% (CI, 62% to 78%) and 68% (CI, 60% to 76%) of patients responding, respectively. Fewer patients reported 100% reduction in symptoms with only 21% of patients reporting 100% response at 48 weeks. By 48 weeks there was a mean decrease in urge urinary incontinence episodes (-2.61), urinary voids (-2.12), urgency episodes (-1.49), and nocturia episodes (-0.51). Outcomes were not stratified by prior treatments received. Outcomes were impacted by the COVID-19 pandemic. Pre-pandemic and in-person responder rates were 75% and 74%, respectively, whereas the responder rate during the pandemic was 60% (n=25) and the responder rate of remote visits was 57% (n=14). Adverse events related to the device or procedure were reported in 20% of patients and most were mild (11%) to moderate (6%). There were 3 severe adverse events, including 1 post-operative wound infection, 1 implant site infection, and 1 device stimulation issue. While the study met its primary performance goal of at least a 40% response rate after 48 weeks of therapy, the certainty of this data is limited by the lack of blinding and a control group and the fact that a performance goal was identified after patients had already been implanted. (26) Thus, the FDA has required the manufacturer of the eCoin system to conduct a post-approval study to provide greater certainty of the potential benefit of the device. It is also intended to address safety concerns regarding device explantation and reimplantation following battery depletion given that the study observed the need to re-implant the device after only 1 year. Possible reasons for the negative impact of COVID-19 on the 48 week response rate were not explored.

A feasibility study conducted by MacDiarmid et al. (2019) for the eCoin device conducted in the US and New Zealand initially enrolled 46 patients at 7 sites and found reduced urge urinary incontinence episodes at 3 months follow-up (from 4.2 to 1.7 daily episodes; $p=.001$). (27) Subsequent long-term data published in 2021 indicate continued safety and efficacy of eCoin with 65% of patients considered responders and 26% of responders having complete continence at 12 months and only 1 serious infection-related adverse event. (28) A follow-up study of 23 patients who were reimplanted with an eCoin device after 1 year with a second-generation device found reimplantation to be successful with 74% and 82% of patients having at least 50% reduction in episodes of urge urinary incontinence at 12 and 24 weeks, respectively. (29) No serious device-related adverse events were reported.

Section Summary: STNS for Non-Neurogenic Urinary Dysfunction Including OAB

An open-label, single-arm study evaluating the first FDA-approved wireless subcutaneous tibial nerve stimulation device (eCoin) demonstrated a 68% response rate at 48 weeks of follow-up. However, the certainty of the evidence is limited by the lack of comparator group and a lower response rate during the COVID-19 pandemic. An ongoing post-approval study may elucidate the certainty of benefit, including safety of reimplantation given battery lifespan concerns.

Neurogenic Bladder Dysfunction

Clinical Context and Therapy Purpose

The purpose of PTNS in individuals who have neurogenic bladder dysfunction is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with neurogenic bladder dysfunction. Symptoms may include urinating small amounts often, problems starting urination, problems emptying the bladder, inability to detect a full bladder, and losing bladder control.

Interventions

The therapy being considered is PTNS. During PTNS, a needle is inserted above the medial malleolus into the posterior tibial nerve followed by the application of low-voltage (10 mA, 1-10 Hz frequency) electrical stimulation. Noninvasive PTNS may be delivered with transcutaneous or surface electrodes. The recommended course of treatment is an initial series of 12 weekly office-based treatments followed by an individualized maintenance treatment schedule.

Comparators

The following therapies are currently being used to make decisions about neurogenic bladder dysfunction: conservative treatments (e.g., medication to relax the bladder or to activate pelvic muscles, catheterization to empty the bladder, pelvic floor muscle training), botulinum toxin, and SNS.

Botulinum toxin is injected into the detrusor muscle. However, the toxin increases the risk of urinary retention and is not recommended for patients with a history of urinary retention or recurrent UTIs.

Sacral nerve stimulation may be conducted in an outpatient clinical setting using temporary wire leads. Due to the incidences of lead migration, a 2-step process in a surgical setting is recommended. In the initial test phase, wire leads are inserted under the skin and if 50% improvement is reported, the patient may elect permanent implantation with a pacemaker-like stimulator. If the test phase is unsuccessful, the leads are then removed.

Outcomes

The general outcomes of interest are reduced symptoms and improved quality of life. Outcomes are measured following the 12-week treatment regimen.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.

- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Systematic Reviews

Schneider et al. (2015) published a systematic review on tibial nerve stimulation (transcutaneous and percutaneous) for treating neurogenic lower urinary tract dysfunction. (30) In a literature search through January 2015, 16 studies were identified: 4 RCTs, 9 prospective cohort studies, 2 retrospective case series, and 1 case report. Sample sizes of the included studies were small; most included fewer than 50 patients, and none had a sample size larger than 100 patients. Three of the 4 RCTs used TTNS, and the fourth study, which was conducted in Iran, stated that PTNS was used but did not specify the device. The 4 RCTs included different study populations: women with neurogenic bladder (n=1), men with neurogenic OAB (n=1), multiple sclerosis patients (n=1), and Parkinson disease patients (n=1). Comparison interventions were tolterodine, pelvic floor muscle training, lower-limb stretching, and sham (1 study each). Pooled analyses were not conducted, and the systematic review mainly discussed intermediate outcomes (e.g., maximum cystometric capacity, maximum detrusor pressure). None of the RCTs reported statistically significant between-group differences in clinical outcome variables (e.g., number of episodes of urgency, frequency, nocturia). (31-34)

Randomized Controlled Trials

Zonic-Imamovic et al. (2019) published the results of an RCT evaluating treatment with oxybutynin compared to TTNS in multiple sclerosis patients with OAB. (35) Patients were allocated to 2 groups of 30 patients each. Patients treated with anticholinergic therapy received 5 mg oxybutynin twice daily for 3 months. Patients treated with TTNS were treated at home daily for 30 minutes for 3 months. The OAB-q SF was utilized to assess the frequency of OAB symptoms and the quality of life of patients. For those treated with oxybutynin, the mean symptom subscale score improved from 61.9 ± 6.0 to 32.4 ± 14.8 ($p < .001$), and the mean quality of life subscale score improved from 27.8 ± 13.7 to 56.1 ± 17.3 ($p < .001$) after treatment. For those treated with TTNS, the mean symptom subscale score improved from 61.2 ± 14.6 to 50.8 ± 12.3 ($p = .004$) and the mean quality of life subscale score improved from 28.5 ± 12.6 to 38.3 ± 11.4 ($p = .003$). Final differences in symptoms and quality of life were found to be statistically significant between groups ($p < .001$) and favored treatment with oxybutynin.

A sham-controlled, double-blind RCT of TTNS in patients with neurogenic OAB and women with non-neurogenic OAB was conducted by Welk et al. (2020) from January 2016 to March 2019. (36) Fifty patients were recruited (OAB=20; neurogenic=30) and 24 were allocated to the sham group while 26 were allocated to active TTNS therapy. Baseline group characteristics were not specified but were noted to be similar. The majority of neurogenic OAB study participants had multiple sclerosis (22/30; 73%). The primary outcome measure was an improvement of patient perception of bladder condition (PPBC). Active responders did not significantly differ between

groups, numbering 3/24 (13%) in the sham group and 4/26 (15%) in the active group ($p=.77$). No significant differences in secondary outcome measures (24-hour pad weight, voiding diary parameters, condition-specific patient-reported outcomes) were noted. The end-of-study marginal mean PPBC score was 3.3 (95% CI, 2.8 to 3.7) versus 2.9 (95% CI, 2.5 to 3.4) in the sham versus active groups, respectively. Findings were not stratified according to neurogenic or non-neurogenic disease. The authors concluded that TTNS does not appear to be effective for treating symptoms in individuals with neurogenic or non-neurogenic OAB.

Sham-controlled trials of TTNS in individuals with acute spinal cord injury (TASCI; NCT03965299) and Parkinson disease (UROPAKTEENS; NCT02190851) are ongoing.

Section Summary: Neurogenic Bladder Dysfunction

Few RCTs evaluating tibial nerve stimulation for treating neurogenic bladder have been published to date, and all but 1 performed transcutaneous stimulation rather than PTNS. Studies varied widely in study populations and comparator interventions. Study findings have not suggested that tibial nerve stimulation significantly reduces incontinence symptoms and improves other outcomes.

Fecal Incontinence

Clinical Context and Therapy Purpose

The purpose of PTNS in individuals who have fecal incontinence is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with fecal incontinence.

Interventions

The therapy being considered is PTNS. During PTNS, a needle is inserted above the medial malleolus into the posterior tibial nerve followed by the application of low-voltage (10 mA, 1-10 Hz frequency) electrical stimulation. Noninvasive PTNS may be delivered with transcutaneous or surface electrodes. The recommended course of treatment is an initial series of 12 weekly office-based treatments followed by an individualized maintenance treatment schedule.

Devices are not FDA cleared for the treatment of fecal incontinence.

Comparators

The following therapies are currently being used to make decisions about fecal incontinence: conservative therapies (e.g., medical management, retraining of pelvic floor and abdominal wall musculature, dietary changes), medications, and SNS.

Sacral nerve stimulation may be conducted in an outpatient clinical setting using temporary wire leads. Due to the incidence of lead migration, a 2-step process in a surgical setting is

recommended. In the initial test phase, wire leads are inserted under the skin, and if improvement is reported after 2 weeks, the patient may elect permanent implantation with a pacemaker-like stimulator. If the test phase is unsuccessful, the leads are then removed.

Outcomes

The general outcomes of interest are reduced symptoms (e.g., self-reported assessment of symptoms, a decrease in the number of voids per day) and improved quality of life. Outcomes are measured following the 6- to 12-week treatment regimen.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Systematic Reviews

Luo et al. (2024) published a meta-analysis evaluating PTNS versus sham electrical stimulation for treatment of fecal incontinence in adults. (37) The literature search was done through May 2022 and identified 4 RCTs (N=439). The analysis concluded that when compared to the control group, PTNS showed greater efficacy in lowering weekly episodes of fecal incontinence (MD, -1.6; 95% CI -2.94 to -0.26; p=.02; $I^2=30\%$). A greater number of patients in the PTNS group also reported a weekly decrease in fecal incontinence episodes of more than 50% compared to the control group (RR, 0.73; 95% CI, 0.57 to 0.94; p=.02; $I^2=6\%$). None of the fecal incontinence quality of life or St Mark's incontinence scores showed any significant differences between groups.

Sarveazad et al. (2019) conducted a systematic review and meta-analysis investigating the role of tibial nerve stimulation versus sham in the control of fecal incontinence. (38) A literature search conducted through December 2016 identified 5 studies including 249 patients treated with PTNS and 239 treated with sham. Studies utilizing transcutaneous stimulation were also eligible. A significant decrease in the number of fecal incontinence episodes was found in the PTNS group (standardized mean difference [SMD], -0.38; 95% CI, -0.67 to 0.10; $I^2=32.8\%$; p=.009). However, no significant effect on incontinence scores (SMD, 0.13; 95% CI, -0.49 to 0.75; $I^2=88.0\%$; p=.68), resting pressure (SMD, 0.12; 95% CI, -0.14 to 0.37; $I^2=28.8\%$; p=.67), squeezing pressure (SMD, -0.27; 95% CI, -1.03 to 0.50; $I^2=85.5\%$; p=.50), or maximum tolerable volume (SMD, -0.10; 95% CI, -0.40 to 0.20; $I^2=0.0\%$; p=.52) was reported.

Tan et al. (2019) published a systematic review and meta-analysis reporting placebo response rates in electrical nerve stimulation trials for fecal incontinence and constipation. (39) A literature search was conducted through April 2017 identifying 10 randomized sham-controlled

trials. Sham stimulation resulted in significant improvements in fecal incontinence episodes by 1.3 episodes per week (95% CI, -2.53 to -0.01; $p=.05$) and Cleveland Clinic Severity Scores by 2.2 points (95% CI, 1.01 to 3.36; $p=.0003$). The authors note that these findings highlight the importance of sham controls in nerve stimulation trials.

Simillis et al. (2018) conducted a systematic review and meta-analysis comparing PTNS with SNS for the treatment of fecal incontinence. (40) The literature search identified 4 studies (1 RCT, 3 nonrandomized prospective studies) including 302 patients (109 undergoing SNS, 193 undergoing PTNS). The Cochrane Collaboration's risk of bias tool was used to assess study quality. Because none of the studies blinded participants and personnel, the risk of performance and detection biases were high. Attrition and publication biases were not detected. Meta-analysis showed that patients undergoing SNS experienced significant improvements compared with patients undergoing PTNS as measured on the Wexner Fecal Incontinence Score (weighted mean difference [WMD], 2.3; 95% CI, 1.1 to 3.4) and fecal incontinence episodes per week (WMD, 8.1; 95% CI, 4.1 to 12.1).

Edenfield et al. (2015) conducted a literature search through November 2013 and identified 17 studies (4 RCTs, 13 case series) on the use of tibial nerve stimulation (percutaneous and transcutaneous) for the treatment of fecal incontinence. (41) Three of the RCTs evaluated TENS and the other PTNS. The 1 RCT and 4 case series using PTNS reported significant decreases in weekly fecal incontinence episodes following 12 weeks of treatment. The quality of life domain scores (e.g., depression, embarrassment, coping, lifestyle) showing significant improvements differed across the PTNS studies.

Horrocks et al. (2014) conducted a literature search through February 2013 and identified 12 articles, 6 related to PTNS, 5 related to transcutaneous nerve stimulation, and 1 comparing both methods. (42) One RCT, by George et al. (2013), (43) discussed below, was included in the Horrocks et al. (2014) and the Edenfield et al. (2015) reviews. Horrocks et al. (2014) identified 5 case series and an RCT that reported the outcome of 50% or greater reduction in the number of fecal incontinence episodes per week immediately after PTNS treatment. In these studies, a median of 71% of patients (range, 63%-82%) reported at least a 50% reduction in episodes. The Horrocks (2014) analysis did not report on control groups.

Randomized Controlled Trials

George et al. (2013) published the first sham-controlled trial. (43) Thirty patients (28 women) who had failed conservative therapy for fecal incontinence were randomized to PTNS (n=11), TTNS (n=11), or sham transcutaneous stimulation (n=8). Patients in all groups received a total of 12 treatments given twice weekly for 6 weeks. (This differed from the PTNS manufacturer's recommended course of 12 weekly treatments.) The primary study endpoint was at least a 50% reduction in the mean number of incontinence episodes per week at the end of the 6-week treatment period. Only 1 patient failed to complete the trial, and data were analyzed on an intention-to-treat basis. Nine of 11 patients in the PTNS group, 5 of 11 in the TTNS group, and 1 of 8 in the sham group attained the primary endpoint ($p=.035$). The mean number of incontinence episodes per week (standard deviation) at the end of the study was 1.8 (0.8), 5.1

(4.2), and 4.7 (3.5) in the PTNS, transcutaneous nerve stimulation, and sham groups, respectively ($p=.04$). These findings are limited by the small sample size and short-term follow-up.

A large sham-controlled randomized trial, known as CONFIDeNT, was by Knowles et al. (2015). (44) The trial was double-blind and multicenter. A total of 227 patients with fecal incontinence sufficiently severe to warrant intervention (according to the principal investigator at each site) were randomized to PTNS ($n=115$) or sham stimulation ($n=112$). Both groups received 12 weekly, 30-minute sessions. The primary outcome was at least a 50% reduction in the mean number of episodes of fecal incontinence per week compared with baseline. The mean number of episodes was calculated from 2-week bowel diaries. Twelve patients withdrew from the trial. After treatment, 39 (38%) of 103 in the PTNS group and 32 (31%) of 102 in the sham group had at least a 50% reduction in the number of fecal incontinence episodes per week. The difference between groups was not statistically significant (adjusted odds ratio, 1.28; 95% CI, 0.72 to 2.28; $p=.396$). There was also no significant difference between the PTNS and sham groups in the proportion of patients achieving more than 25%, more than 75%, or 100% reduction in mean weekly episodes. There was, however, a significantly greater reduction in the absolute mean number of weekly fecal incontinence episodes in the PTNS group. The mean number of weekly fecal incontinence episodes in the PTNS group was 6.0 at baseline and 3.5 after treatment compared with 6.9 and 4.8, respectively, in the sham group (MD, -2.26; 95% CI, -4.18 to -0.35; $p=.021$).

Horrocks et al. (2017) conducted a post hoc analysis of data from the CONFIDeNT trial, to evaluate factors associated with the efficacy of PTNS for fecal incontinence. (45) Results from the multivariable logistic regression on the outcome of 50% improvement in weekly fecal incontinence episodes found that age, fecal urgency, stool consistency, and severity of fecal incontinence did not affect response to PTNS. The presence of obstructive defecation was the only variable that negatively affected response to PTNS (OR, 0.4; 95% CI, 0.2 to 0.9). Excluding patients with obstructive defecation ($n=112$) resulted in a significant effect of PTNS compared with sham (49% vs 18%, $p=.002$).

Thin et al. (2015) published data on PTNS versus SNS for fecal incontinence. (46) Forty women were randomized, 17 to PTNS and 23 to SNS. Patients in the PTNS group had an initial course of 12 weekly sessions and received 3 maintenance treatments during the following 2 months. Sacral nerve stimulation was provided using a 2-stage approach: a test stimulation was conducted first, followed by permanent stimulation if they achieved a decrease in fecal incontinence episodes of at least 50% over the 2-week test period. The primary outcome was a reduction of at least 50% in fecal incontinence episodes per week (as determined by 2-week bowel diaries). Fifteen women passed temporary SNS and underwent permanent implantation. The proportion of patients who achieved the primary outcome at 6 months was 11 (61%) of 18 in the SNS group and 7 (47%) of 15 in the PTNS group. Rates at 3 months were 9 (47%) of 19 in the SNS group and 6 (38%) of 16 in the PTNS group. The authors did not conduct a direct statistical comparison of SNS and PTNS because the study was a pilot.

A single-center, investigator-blinded RCT compared PTNS (n=25) to anal inserts (n=25) in patients with fecal incontinence. (47) At 3 months, a 50% reduction in weekly episodes of fecal incontinence, as calculated by a prospectively completed 2-week bowel diary, was found in 76% (19/25) of patients in the anal insert group and 48% (12/25) of patients in the PTNS group (p=.04). Both groups had similar improvements in St Mark's fecal incontinence scores and the International Consultation on Incontinence Questionnaire.

Zyczynski et al. (2022) conducted the Neuromodulation for Accidental Bowel Leakage (NOTABLE) sham-controlled trial of PTNS in women with fecal incontinence (N=166). (48) Women with greater than or equal to 3 months of moderate-to-severe fecal incontinence were randomized to PTNS (n=111) or sham stimulation (n=55). Stimulation was delivered in 12 weekly 30-minute sessions to a single lower extremity. The primary outcome was change from baseline in St. Mark score (a 7-item, validated patient-reported outcome) measured after 12 weekly treatments. Secondary outcomes included stool consistency, bowel movement, and stool leakage episodes per week. There was no significant difference between the PTNS group (-5.3 points) and the sham group (-3.9 points) in terms of improvement from baseline in St. Mark scores (adjusted difference -1.3; 95% CI, -2.8 to 0.2). There also was no significant difference in reduction in weekly fecal incontinence episodes from baseline between the PTNS group (-2.1 episodes) and sham group (-1.9 episodes) (adjusted difference -0.26; 95% CI, -1.85 to 1.33).

Nonrandomized Studies

Sanagapalli et al. (2018) conducted a retrospective chart review of consecutive patients with multiple sclerosis-related fecal incontinence who had failed conservative therapy and who were subsequently treated with PTNS. (49) Patients (N=33) received 8 weekly treatments of PTNS, with responders receiving an additional 4 weeks of treatment. Subjects were classified as responders based on the Wexner Fecal Incontinence Score if scores at the end of treatment were either half of the baseline score or if the score was less than 10. Twenty-six (79%) of the patients were classified as responders. Responders tended to be more symptomatic at baseline and had greater improvements in quality of life scores.

Section Summary: Fecal Incontinence

Few RCTs evaluating PTNS for the treatment of fecal incontinence have been published to date. The available RCTs have not found a clear benefit of PTNS. None of the sham-controlled trials found that active stimulation was superior to sham for achieving a reduction in mean incontinence episodes. The sham-controlled randomized trial by Knowles et al. found a significantly greater decrease in the absolute number of weekly incontinence episodes in the active treatment group, but the overall trial findings did not suggest the superiority of PTNS over sham treatment. The sham-controlled randomized trial by Zyczynski et al. did not indicate a benefit of PTNS over sham stimulation either. A meta-analysis of 1 RCT and several observational studies reported that patients receiving SNS experienced significant benefits compared with patients receiving PTNS. A post hoc analysis of the larger trial suggested a subset of patients with fecal incontinence, those without concomitant obstructive defecation, might benefit from PTNS.

Summary of Evidence

For individuals who have non-neurogenic urinary dysfunction including overactive bladder and have failed behavioral and pharmacologic therapy who receive an initial course of percutaneous tibial nerve stimulation (PTNS) , the evidence includes randomized sham-controlled trials, randomized controlled trials (RCTs) with an active comparator, and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The Sham Effectiveness in Treatment of Overactive Bladder Symptoms (SUMiT) and the Overactive Bladder Innovative Therapy (OrBIT) trials are 2 key industry-sponsored RCTs. Systematic reviews that included these and other published trials have found short-term reductions in voiding dysfunction with PTNS. The largest, highest quality study was the double-blind, sham-controlled SUMiT trial, which reported a statistically significant benefit of PTNS versus sham at 12 weeks. In an additional, small sham-controlled trial, a 50% reduction in urge incontinent episodes was attained in 71% of the PTNS group compared with 0% in the sham group. The nonblinded OrBIT trial found that PTNS was noninferior to medication therapy at 12 weeks. Adverse events were limited to local irritation effects. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have overactive bladder syndrome that have failed behavioral and pharmacologic therapy who respond to an initial course of PTNS and who receive maintenance PTNS, the evidence includes observational studies and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The SUMiT and OrBIT trials each included extension studies that followed individuals who responded to the initial course of PTNS and continued to receive periodic maintenance therapy. There is variability in the interval between and frequency of maintenance treatments, and an optimal maintenance regimen remains unclear. There are up to 36 months of observational data available, reporting that there is a durable effect for some of these patients. While comparative data are not available after the initial 12-week treatment period, the observational data support a clinically meaningful benefit for use in individuals who have already failed behavioral and pharmacologic therapy and who respond to the initial course of PTNS. Percutaneous tibial nerve stimulation may allow such individuals to avoid more invasive interventions. Adverse events appear to be limited to local irritation for both short- and long-term PTNS use. Typical regimens schedule maintenance treatments every 4-6 weeks. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have non-neurogenic urinary dysfunction including overactive bladder and who have failed behavioral and pharmacologic therapy or who have responded to an initial course of PTNS and then receive subcutaneous tibial nerve stimulation (STNS), the evidence includes single-arm studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The pivotal open-label, single-arm study leading to FDA-approval of the subcutaneously-implanted, wireless eCoin tibial nerve stimulation system demonstrated a 68% response rate at 48 weeks of follow-up which

surpassed a performance goal of 40%. However, the certainty of the evidence is limited by the lack of comparator group and a lower response rate observed during the COVID-19 pandemic. Additionally, the FDA noted that the performance goal was identified after patients had already been implanted. An ongoing post-approval study may elucidate the certainty of benefit, including safety of reimplantation given battery lifespan concerns. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have neurogenic bladder dysfunction who receive PTNS, the evidence includes several RCTs and a systematic review of RCTs and observational data. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Only a few RCTs evaluating tibial nerve stimulation for treating neurogenic bladder have been published to date, and all but 1 performed transcutaneous stimulation rather than PTNS. Studies varied widely in factors such as study populations and comparator interventions. Study findings have not reported that tibial nerve stimulation significantly reduced incontinence symptoms and improved other outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have fecal incontinence who receive PTNS, the evidence includes several RCTs and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The available RCTs have not found a clear benefit of PTNS. None of the sham-controlled trials found that active stimulation was superior to sham for achieving a reduction in mean weekly fecal incontinence episodes. The larger sham-controlled randomized trial did find a significantly greater decrease in the absolute number of weekly incontinence episodes in the active treatment group, but the overall trial findings did not suggest the superiority of PTNS over sham treatment. An additional sham-controlled randomized trial did not identify a benefit of PTNS over sham stimulation. A meta-analysis of a single RCT and several observational studies reported that patients receiving sacral nerve stimulation experienced significant benefits compared with patients receiving PTNS. A post hoc analysis of the larger trial suggested a subset of patients with fecal incontinence (those without concomitant obstructive defecation) may benefit from PTNS. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Clinical Input From Physician Specialty Societies and Academic Medical Centers

Clinical input supports that the following indication provides a clinically meaningful improvement in the net health outcome and is consistent with generally accepted medical practice: Use of monthly maintenance PTNS for individuals with non-neurogenic urinary dysfunction including overactive bladder who have failed behavioral and pharmacologic therapy and respond to an initial course of PTNS.

Practice Guidelines and Position Statements

American Urological Association et al.

In 2019, the American Urological Association (AUA) and the Society of Urodynamics, Female Pelvic Medicine & Urogenital Reconstruction (SUFU) published updated guidelines on the diagnosis and treatment of non-neurogenic overactive bladder in adults. (50) The guidelines included a statement that clinicians may offer PTNS as a third-line treatment option in carefully selected patients. The statement carried a grade C rating, indicating that the balance of benefits and risks/burdens are uncertain. In 2024, the AUA/SUFU published a guideline on the diagnosis and treatment of idiopathic overactive bladder. (51) In the unabridged version of the guideline, PTNS is mentioned as a minimally invasive therapy option. The guideline states that "Clinicians may offer minimally invasive procedures to patients who are unable or unwilling to undergo behavioral, non-invasive, or pharmacologic therapies (Clinical Principle)" and " Clinicians may offer patients with OAB, in the context of shared decision making, minimally invasive therapies without requiring trials of behavioral, non-invasive, or pharmacologic management (Expert Opinion)".

American College of Obstetricians and Gynecologists

In 2015, the American College of Obstetricians and Gynecologists practice bulletin on the treatment of urinary incontinence in women did not address PTNS or other types of nerve stimulation. (52)

American Gastroenterological Association

In 2017, the American Gastroenterological Association issued an expert review and clinical practice update on surgical interventions and device-aided therapy for the treatment of fecal incontinence. (53) The update stated that "until further evidence is available, percutaneous tibial nerve stimulation should not be used for managing FI [fecal incontinence] in clinical practice."

Ongoing and Unpublished Clinical Trials

Some currently ongoing and/or unpublished trials that might influence this policy are listed in Table 7.

Table 7. Summary of Key Trials

NCT Number	Trial Name	Planned Enrollment	Completion Date
<i>Ongoing</i>			
NCT05685433 ^a	A Real World Study of eCoin for Urgency Urinary Incontinence: Post Approval Evaluation (RECIPE)	200	Dec 2030
NCT05882318 ^a	Evaluating Effectiveness of Sensory and Subsensory Stimulation Amplitudes With eCoin® Tibial Nerve Stimulation in Urgency Urinary Incontinence Episodes and Quality of Life (ESSENCE)	50	Jul 2024
NCT05422625	PTNS for Female Patients Suffering From Multiple Sclerosis (PTNS-MS)	34	Oct 2023 (recruiting)

Unpublished			
NCT02190851	Evaluation of Treatment by Transcutaneous Electrical Nerve Stimulation (TENS) of the Posterior Tibial Nerve for Lower Urinary Tract Disorders in Parkinson's Syndrome	220	Oct 2020 (completed)

NCT: national clinical trial

^a Denotes industry-sponsored or cosponsored trial.

Coding

Procedure codes on Medical Policy documents are included **only** as a general reference tool for each policy. **They may not be all-inclusive.**

The presence or absence of procedure, service, supply, or device codes in a Medical Policy document has no relevance for determination of benefit coverage for members or reimbursement for providers. **Only the written coverage position in a Medical Policy should be used for such determinations.**

Benefit coverage determinations based on written Medical Policy coverage positions must include review of the member's benefit contract or Summary Plan Description (SPD) for defined coverage vs. non-coverage, benefit exclusions, and benefit limitations such as dollar or duration caps.

CPT Codes	64566, 64999, 0587T, 0588T, 0589T, 0590T, 0816T, 0818T
HCPCS Codes	A4545, E0736, E0737

*Current Procedural Terminology (CPT®) ©2023 American Medical Association: Chicago, IL.

References

1. Wang M, Jian Z, Ma Y, et al. Percutaneous tibial nerve stimulation for overactive bladder syndrome: a systematic review and meta-analysis. *Int Urogynecol J.* Dec 2020; 31(12):2457-2471. PMID 32681345
2. Xiong SC, Peng L, Hu X, et al. Effectiveness and safety of tibial nerve stimulation versus anticholinergic drugs for the treatment of overactive bladder syndrome: a meta-analysis. *Ann Palliat Med.* Jun 2021; 10(6):6287-6296. PMID 34118839
3. Coolen RL, Groen J, Scheepe JR, et al. Transcutaneous electrical nerve stimulation and percutaneous tibial nerve stimulation to treat idiopathic nonobstructive urinary retention: a systematic review. *Eur Urol Focus.* Sep 2021; 7(5):1184-1194. PMID 33268327
4. Ho FCS, He C, Yao HH, et al. Efficacy of sacral neuromodulation and percutaneous tibial nerve stimulation in the treatment of chronic nonobstructive urinary retention: a systematic review. *Neurourol Urodyn.* Jun 2021; 40(5):1078-1088. PMID 33973670
5. Tutolo M, Ammirati E, Heesakkers J, et al. Efficacy and safety of sacral and percutaneous tibial neuromodulation in non-neurogenic lower urinary tract dysfunction and chronic pelvic pain: a systematic review of the literature. *Eur Urol.* Mar 2018; 73(3):406-418. PMID 29336927
6. Tutolo M, Ammirati E, Van der Aa F. What is new in neuromodulation for overactive bladder? *Eur Urol Focus.* Jan 2018; 4(1):49-53. PMID 29773501

7. Stewart F, Gameiro LF, El Dib R, et al. Electrical stimulation with non-implanted electrodes for overactive bladder in adults. *Cochrane Database Syst Rev*. Dec 09 2016; 12: Cd010098. PMID 27935011
8. Burton C, Sajja A, Latthe PM. Effectiveness of percutaneous posterior tibial nerve stimulation for overactive bladder: a systematic review and meta-analysis. *Neurourol Urodyn*. Nov 2012; 31(8):1206-1216. PMID 22581511
9. Levin PJ, Wu JM, Kawasaki A, et al. The efficacy of posterior tibial nerve stimulation for the treatment of overactive bladder in women: a systematic review. *Int Urogynecol J*. Nov 2012; 23(11):1591-1597. PMID 22411208
10. Moosdorff-Steinhauser HF, Berghmans B. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review. *Neurourol Urodyn*. Mar 2013; 32(3):206-214. PMID 22907807
11. Gaziev G, Topazio L, Iacovelli V, et al. Percutaneous tibial nerve stimulation (PTNS) efficacy in the treatment of lower urinary tract dysfunctions: a systematic review. *BMC Urol*. Nov 25 2013; 13:61. PMID 24274173
12. Shamliyan T, Wyman J, Kane RL. Nonsurgical Treatments for Urinary Incontinence in Adult Women: Diagnosis and Comparative Effectiveness. Rockville (MD): Agency for Healthcare Research and Quality (US). 2012; 11(12)-EHC074-EF. PMID 22624162
13. Finazzi-Agro E, Petta F, Scibica F, et al. Percutaneous tibial nerve stimulation effects on detrusor overactivity incontinence are not due to a placebo effect: a randomized, double-blind, placebo controlled trial. *J Urol*. 2010; 184(5):2001-2006. PMID 20850833
14. Peters KM, Carrico DJ, Perez-Marrero P, et al. Randomized trial of percutaneous tibial nerve stimulation versus sham efficacy in the treatment of overactive bladder syndrome: results from the SUMiT trial. *J Urol*. 2010; 183(4):1438-1443. PMID 20171677
15. Peters K, Carrico D, Burks F. Validation of a sham for percutaneous tibial nerve stimulation (PTNS). *Neurourol Urodyn*. 2009; 28(1):58-61. PMID 18671297
16. Peters KM, Carrico DJ, Wooldridge LS, et al. Percutaneous tibial nerve stimulation for the long-term treatment of overactive bladder: 3-year results of the STEP study. *J Urol* 2013; 189(6):2194-2201. PMID 23219541
17. Vecchioli-Scaldazza C, Morosetti C. Effectiveness and durability of solifenacin versus percutaneous tibial nerve stimulation versus their combination for the treatment of women with overactive bladder syndrome: a randomized controlled study with a follow-up of ten months. *Int Braz J Urol*. Jan-Feb 2018; 44(1):102-108. PMID 29064651
18. Boudaoud N, Binet A, Line A, et al. Management of refractory overactive bladder in children by transcutaneous posterior tibial nerve stimulation: A controlled study. *J Pediatr Urol*. Jun 2015; 11(3):138 e131-e110. PMID 25979217
19. Gungor Ugurlucan F, Onal M, Aslan E, et al. Comparison of the effects of electrical stimulation and posterior tibial nerve stimulation in the treatment of overactive bladder syndrome. *Gynecol Obstet Invest*. 2013; 75(1):46-52. PMID 23171636
20. Preyer O, Umek W, Laml T, et al. Percutaneous tibial nerve stimulation versus tolterodine for overactive bladder in women: a randomised controlled trial. *Eur J Obstet Gynecol Reprod Biol*. Aug 2015; 191:51-56. PMID 26073262
21. Vecchioli-Scaldazza C, Morosetti C, Berouz A, et al. Solifenacin Succinate versus percutaneous tibial nerve stimulation in women with overactive bladder syndrome: results

of a randomized controlled crossover study. *Gynecol Obstet Invest.* 2013; 75(4):230-234. PMID 23548260

22. Schreiner L, dos Santos TG, Knorst MR, et al. Randomized trial of transcutaneous tibial nerve stimulation to treat urge urinary incontinence in older women. *Int Urogynecol J.* Sep 2010; 21(9):1065-1070. PMID 20458465

23. Peters KM, Macdiarmid SA, Wooldridge LS, et al. Randomized trial of percutaneous tibial nerve stimulation versus extended-release tolterodine: results from the overactive bladder innovative therapy trial. *J Urol.* Sep 2009; 182(3):1055-1061. PMID 19616802

24. MacDiarmid SA, Peters KM, Shobeiri SA, et al. Long-term durability of percutaneous tibial nerve stimulation for the treatment of overactive bladder. *J Urol.* 2010; 183(1):234-240. PMID 19913821

25. Rogers A, Bragg S, Ferrante K, et al. Pivotal Study of Leadless Tibial Nerve Stimulation with eCoin® for Urgency Urinary Incontinence: An Open-Label, Single Arm Trial. *J Urol.* Aug 2021; 206(2):399-408. PMID 33797291

26. U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): eCoin Peripheral Neurostimulator System (P200036). March 1, 2022. Available at <<https://www.accessdata.fda.gov>> (accessed June 20, 2024).

27. MacDiarmid S, Staskin DR, Lucente V, et al. Feasibility of a Fully Implanted, Nickel Sized and Shaped Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome with Urgency Urinary Incontinence. *J Urol.* May 2019; 201(5):967-972. PMID 31009968

28. Gilling P, Meffan P, Kaaki B, et al. Twelve-month Durability of a Fully-implanted, Nickel-sized and Shaped Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome with Urgency Urinary Incontinence: A Single-Arm, Prospective Study. *Urology.* Nov 2021; 157:71-78. PMID 34048826

29. Kaaki B, English S, Gilling P, et al. Six-Month Outcomes of Reimplantation of a Coin-Sized Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome With Urgency Urinary Incontinence. *Female Pelvic Med Reconstr Surg.* May 01 2022; 28(5):287-292. PMID 35536667

30. Schneider MP, Gross T, Bachmann LM, et al. Tibial nerve stimulation for treating neurogenic lower urinary tract dysfunction: a systematic review. *Eur Urol.* Nov 2015; 68(5):859-867. PMID 26194043

31. Monteiro ES, de Carvalho LB, Fukushima MM, et al. Electrical stimulation of the posterior tibialis nerve improves symptoms of poststroke neurogenic overactive bladder in men: a randomized controlled trial. *Urology.* Sep 2014; 84(3):509-514. PMID 25168524

32. Perissinotto MC, D'Ancona CA, Lucio A, et al. Transcutaneous tibial nerve stimulation in the treatment of lower urinary tract symptoms and its impact on health-related quality of life in patients with Parkinson disease: a randomized controlled trial. *J Wound Ostomy Continence Nurs.* Jan-Feb 2015; 42(1):94-99. PMID 25549314

33. Gaspard L, Tombal B, Opsomer RJ, et al. [Physiotherapy and neurogenic lower urinary tract dysfunction in multiple sclerosis patients: a randomized controlled trial]. *Prog Urol.* Sep 2014; 24(11):697-707. PMID 25214451

34. Eftekhar T, Teimoory N, Miri E, et al. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial. *Acta Med Iran.* 2014; 52(11):816-821. PMID 25415813

35. Zonić-Imamovic M, Imamovic S, Cickusic A, et al. Effects of treating an overactive urinary bladder in patients with multiple sclerosis. *Acta Med Acad.* Dec 2019; 48(3):271-277. PMID 32124625

36. Welk B, McKibbon M. A randomized, controlled trial of transcutaneous tibial nerve stimulation to treat overactive bladder and neurogenic bladder patients. *Can Urol Assoc J.* Jul 2020; 14(7):E297-E303. PMID 32017693

37. Luo C, Wei D, Pang K, et al. Is percutaneous tibial nerve stimulation (PTNS) effective for fecal incontinence (FI) in adults compared with sham electrical stimulation? A meta-analysis. *Tech Coloproctol.* Feb 24 2024; 28(1):37. PMID 38401006

38. Sarveazad A, Babahajian A, Amini N, et al. Posterior tibial nerve stimulation in fecal incontinence: a systematic review and meta-analysis. *Basic Clin Neurosci.* Sep-Oct 2019; 10(5):419-431. PMID 32284831

39. Tan K, Wells CI, Dinning P, et al. Placebo response rates in electrical nerve stimulation trials for fecal incontinence and constipation: a systematic review and meta-analysis. *Neuromodulation.* Dec 2020; 23(8):1108-1116. PMID 31889364

40. Simillis C, Lal N, Qiu S, et al. Sacral nerve stimulation versus percutaneous tibial nerve stimulation for faecal incontinence: a systematic review and meta-analysis. *Int J Colorectal Dis.* May 2018; 33(5):645-648. PMID 29470730

41. Edenfield AL, Amundsen CL, Wu JM, et al. Posterior tibial nerve stimulation for the treatment of fecal incontinence: a systematic evidence review. *Obstet Gynecol Surv.* May 2015; 70(5):329-341. PMID 25974730

42. Horrocks EJ, Thin N, Thaha MA, et al. Systematic review of tibial nerve stimulation to treat faecal incontinence. *Br J Surg.* Apr 2014; 101(5):457-468. PMID 24446127

43. George AT, Kalmar K, Sala S, et al. Randomized controlled trial of percutaneous versus transcutaneous posterior tibial nerve stimulation in faecal incontinence. *Br J Surg.* Feb 2013;100(3):330-338. PMID 23300071

44. Knowles CH, Horrocks EJ, Bremner SA, et al. Percutaneous tibial nerve stimulation versus sham electrical stimulation for the treatment of faecal incontinence in adults (CONFIDE NT): a double-blind, multicentre, pragmatic, parallel-group, randomised controlled trial. *Lancet.* Oct 24 2015; 386(10004):1640-1648. PMID 26293315

45. Horrocks EJ, Chadi SA, Stevens NJ, et al. Factors associated with efficacy of percutaneous tibial nerve stimulation for fecal incontinence, based on post-hoc analysis of data from a randomized trial. *Clin Gastroenterol Hepatol.* Dec 2017; 15(12):1915-1921 e1912. PMID 28647458

46. Thin NN, Taylor SJ, Bremner SA, et al. Randomized clinical trial of sacral versus percutaneous tibial nerve stimulation in patients with faecal incontinence. *Br J Surg.* Mar 2015; 102(4):349-358. PMID 2564429

47. Leo CA, Thomas GP, Hodgkinson JD, et al. Randomized pilot study: anal inserts versus percutaneous tibial nerve stimulation in patients with fecal incontinence. *Dis Colon Rectum.* Apr 2021; 64(4):466-474. PMID 33399411

48. Zyczynski HM, Richter HE, Sung VW, et al. Percutaneous tibial nerve stimulation vs sham stimulation for fecal incontinence in women: neuromodulation for accidental bowel leakage randomized clinical trial. *Am J Gastroenterol.* Apr 2022; 117(4):654-667. PMID 35354778

49. Sanagapalli S, Neilan L, Lo JYT, et al. Efficacy of percutaneous posterior tibial nerve stimulation for the management of fecal incontinence in multiple sclerosis: a pilot study. *Neuromodulation*. Oct 2018; 21(7):682-687. PMID 29575432
50. Lightner DJ, Gomelsky A, Souter L, et al. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU Guideline Amendment 2019. *J Urol*. Sep 2019; 202(3):558-563. PMID 31039103
51. Cameron AP, Chung DE, Dielubanza EJ, et al. The AUA/SUFU guideline on the diagnosis and treatment of idiopathic overactive bladder. *J Urol*. Published online April 23, 2024. Available at <<https://www.auajournals.org>>
52. Committee on Practice Bulletins-Gynecology and the American Urogynecologic Society. ACOG Practice Bulletin No. 155: Urinary Incontinence in Women. *Obstet Gynecol*. Nov 2015; 126(5):e66-e81. PMID 26488524
53. Bharucha AE, Rao SSC, Shin AS. Surgical interventions and the use of device-aided therapy for the treatment of fecal incontinence and defecatory disorders. *Clin Gastroenterol Hepatol*. Dec 2017; 15(12):1844-1854. PMID 28838787

Centers for Medicare and Medicaid Services (CMS)

The information contained in this section is for informational purposes only. HCSC makes no representation as to the accuracy of this information. It is not to be used for claims adjudication for HCSC Plans.

The Centers for Medicare and Medicaid Services (CMS) does not have a national Medicare coverage position. Coverage may be subject to local carrier discretion.

A national coverage position for Medicare may have been developed since this medical policy document was written. See Medicare's National Coverage at <<https://www.cms.hhs.gov>>.

Policy History/Revision	
Date	Description of Change
10/01/2024	Document updated with literature review. Coverage unchanged. Added references 37 and 51.
05/15/2024	Document updated with literature review. The following changes were made to Coverage: 1) Removed percutaneous tibial nerve stimulation requirement for 12-month of persistent overactive bladder symptoms; 2) Removed 36 month maximum for percutaneous tibial nerve stimulation; and 3) Added experimental, investigational and/or unproven statement for subcutaneous tibial nerve stimulation delivered by an implantable peripheral neurostimulator system. Added references 25-29; others removed. Title changed from "Percutaneous Tibial Nerve Stimulation (PTNS)".
10/15/2022	Document updated with literature review. Coverage unchanged. Added references 1-4, 41 and 42.
12/01/2021	Reviewed. No changes.

01/01/2021	Document updated with literature review. Coverage unchanged. Added references 11, 28-31, 40 and 43.
01/15/2020	Reviewed. No changes.
12/15/2018	Document updated with literature review. Coverage unchanged. References 5-6, 8, 13-15, 27, 32, 34, and 37-38 added. Some references removed.
12/01/2017	Reviewed. No changes.
01/01/2017	Document updated with literature review. The following changes were made to Coverage: 1) Changed definition of PTNS to “percutaneous tibial nerve stimulation”. 2) Added fecal incontinence to list of indications considered to be experimental, investigational, and/or unproven. 3) Added time requirement of at least 4 weeks for failed behavioral therapy, and changed “and” to “or” in the examples of behavioral therapies. 4) Included “antimuscarinics/anticholinergics and β 3 adrenoceptor agonists” as examples of two medications for treatment of OAB, and added requirement for at least a 4-week trial (unless contraindicated) for each medication. Title changed from “Posterior Tibial Nerve Stimulation (PTNS)”.
07/15/2015	Reviewed. No changes.
10/15/2014	Document updated with literature review. Coverage unchanged.
12/15/2013	Document updated with literature review. The following was added to Coverage: 1) If the patient has shown continued improvement from the first year of treatments with PTNS for OAB, continued PTNS therapy may be considered medically necessary when administered once every 3 weeks to maintain symptom improvement in responders for an additional 12 months, for up to a maximum of 36 months total; 2) Continued PTNS therapy after 12 months when improvement is not sustained, and/or PTNS therapy beyond 36 months are considered experimental, investigational and/or unproven.
08/01/2011	New medical document. Posterior tibial nerve stimulation (PTNS) administered once weekly for up to 12 weeks may be considered medically necessary for treatment of overactive bladder (OAB) when stated criteria are met; thereafter PTNS may continue once every 3 weeks for up to 1 year when criteria are met. (PTNS was previously considered experimental, investigational and unproven on medical policy MED205.032, Percutaneous and Implanted Nerve Stimulation and Neuromodulation.)